Universal gates for a metastable qubit in strontium-88

中文速览 本论文提出并实验验证了一种基于玻色子同位素锶-88亚稳态精细结构能级的量子比特方案。研究团队成功演示了一套完整的通用量子门操作,实现了高保真度的单比特门(0.993)和两比特门(0.9945)。该方案的核心优势在于其“擦除转换”能力:利用量子比特编码空间之外的稳定基态,可以将计算过程中发生的泄漏错误转化为可被实时探测到的原子丢失事件(即擦除错误),这极大地简化了量子纠错的难度。此外,研究者还开创了一种新颖的、能够分辨两个量子比特态的探测方案,从而能够精确地识别和处理原子丢失。这些成果确立了锶原子精细结构量子比特作为一种极具潜力的平台,为构建可扩展、抗错误的量子计算机开辟了新的道路。 English Research Briefing Research Briefing: Universal gates for a metastable qubit in strontium-88 1. The Core Contribution This paper establishes the fine-structure states of bosonic strontium-88 as a high-performance qubit platform for fault-tolerant quantum computing. The authors successfully demonstrate a universal gate set, achieving single- and two-qubit gate fidelities exceeding 99.3% and 99.4% respectively. The central advance is the synergistic implementation of this qubit with two critical error-handling techniques: mid-circuit erasure conversion, which transforms dominant leakage errors into detectable atom loss, and a novel state-resolved detection scheme that can precisely identify these loss events. This work collectively demonstrates a viable and scalable architecture that directly addresses the challenges of leakage and loss, two of the most significant obstacles in neutral-atom quantum computing. ...

August 17, 2025 · 8 min · 1677 words · ArXiv Intelligence Bot

Fault-tolerant quantum computation with a neutral atom processor

中文速览 这篇论文展示了在一个由256个中性镱原子构成的量子处理器上实现的容错量子计算。其核心创新在于一种“擦除转换”技术,该技术将关键的门操作错误转化为可被探测到的原子丢失。这种方法使得量子纠错变得更加高效。研究团队通过该平台成功演示了两项关键实验:一是制备并纠缠了24个逻辑量子比特(由48个物理原子编码),并有效纠正了原子丢失错误;二是在多达28个逻辑量子比特(由112个物理原子编码)上运行了Bernstein-Vazirani算法。实验结果明确表明,经过编码和容错处理的逻辑电路,其性能超越了直接使用物理比特的未编码电路,这为利用中性原子平台实现可扩展、可靠的量子计算开辟了道路。 English Research Briefing Research Briefing: Fault-tolerant quantum computation with a neutral atom processor 1. The Core Contribution This paper presents the design and experimental demonstration of fault-tolerant quantum computation on a scalable neutral atom processor. The central thesis is that by architecting the system to convert dominant gate errors into detectable atom loss (erasure errors), it is possible to achieve superior performance with logical qubits compared to their physical counterparts, even with low-distance quantum error-correcting codes. The authors substantiate this by implementing two key demonstrations at an unprecedented scale: the creation of an entangled 24-logical-qubit cat state and the execution of the Bernstein-Vazirani algorithm on up to 28 logical qubits. The primary conclusion and most important takeaway is that the combination of large qubit numbers, all-to-all connectivity via atom transport, and hardware-level erasure conversion establishes neutral atoms as a highly promising platform for building scalable, reliable quantum computers. ...

August 11, 2025 · 8 min · 1689 words · ArXiv Intelligence Bot