Quantum Circuit Complexity of Matrix-Product Unitaries
中文速览 本文提出了一种将一类被称为矩阵乘积幺正算符(MPU)的量子多体算符高效分解为多项式深度量子线路的系统性方法。MPU作为一维张量网络,天然地保持了量子态的纠缠面积律,能够描述从具有严格因果光锥的量子元胞自动机(QCA)到能产生长程纠缠的复杂幺正演化。然而,由于构成MPU的核心张量本身通常并非幺正算符,如何将其编译成可实际执行的量子线路一直是一个悬而未决的难题。 作者的核心贡献是提供了一个显式的、具有建设性的算法。该算法采用一种递归的、树状的合并方案:首先将单个MPU张量转化为小的局部等距算符(isometry),然后在多个层次上逐步将相邻的等距算符合并,最终构建出完整的N体幺正算符。此方法的最大创新在于设计了一个确定性的幺正合并子程序,它巧妙地推广了“遗忘式振幅放大”(oblivious amplitude amplification)技术,使其能作用于由等距算符定义的不确定输入子空间。这成功避免了传统合并方案中因依赖后选择而导致的成功概率随系统规模指数下降的问题。 研究表明,对于由重复体张量和开放边界构成的MPU,该算法生成的量子线路深度为多项式级别 \(\mathcal{O}(N^\alpha)\),其中指数 \(\alpha\) 仅依赖于张量本身的性质。对于更一般的非均匀MPU,线路深度与一个“MPU条件数”\(q\) 相关,只要该条件数有界,线路深度同样是多项式级的。该工作成功地将MPU这一重要的理论模型与可实现的量子计算模型连接起来,为在量子计算机上模拟具有复杂纠缠结构的幺正动力学开辟了道路。 English Research Briefing Research Briefing: Quantum Circuit Complexity of Matrix-Product Unitaries 1. The Core Contribution This paper presents a seminal, constructive algorithm for decomposing a broad and physically significant class of Matrix-Product Unitaries (MPUs) into quantum circuits with polynomial depth. The central thesis is that the tensor-network structure of MPUs, which guarantees the preservation of the entanglement area law, also enables their efficient implementation, even for unitaries that generate long-range entanglement and lie beyond the well-understood class of Quantum Cellular Automata (QCA). The key takeaway is the development of a deterministic, recursive merging scheme based on a novel generalization of oblivious amplitude amplification, which systematically builds the full MPU from local isometries without the exponential cost associated with post-selection, thus bridging a critical gap between the abstract MPU formalism and its practical realization on a quantum computer. ...