Fault-tolerant quantum computation with a neutral atom processor
中文速览 这篇论文展示了在一个由256个中性镱原子构成的量子处理器上实现的容错量子计算。其核心创新在于一种“擦除转换”技术,该技术将关键的门操作错误转化为可被探测到的原子丢失。这种方法使得量子纠错变得更加高效。研究团队通过该平台成功演示了两项关键实验:一是制备并纠缠了24个逻辑量子比特(由48个物理原子编码),并有效纠正了原子丢失错误;二是在多达28个逻辑量子比特(由112个物理原子编码)上运行了Bernstein-Vazirani算法。实验结果明确表明,经过编码和容错处理的逻辑电路,其性能超越了直接使用物理比特的未编码电路,这为利用中性原子平台实现可扩展、可靠的量子计算开辟了道路。 English Research Briefing Research Briefing: Fault-tolerant quantum computation with a neutral atom processor 1. The Core Contribution This paper presents the design and experimental demonstration of fault-tolerant quantum computation on a scalable neutral atom processor. The central thesis is that by architecting the system to convert dominant gate errors into detectable atom loss (erasure errors), it is possible to achieve superior performance with logical qubits compared to their physical counterparts, even with low-distance quantum error-correcting codes. The authors substantiate this by implementing two key demonstrations at an unprecedented scale: the creation of an entangled 24-logical-qubit cat state and the execution of the Bernstein-Vazirani algorithm on up to 28 logical qubits. The primary conclusion and most important takeaway is that the combination of large qubit numbers, all-to-all connectivity via atom transport, and hardware-level erasure conversion establishes neutral atoms as a highly promising platform for building scalable, reliable quantum computers. ...